Stabilities of Cubic Mappings in Various Normed Spaces: Direct and Fixed Point Methods
نویسندگان
چکیده
In 1940 and 1964, Ulam proposed the general problem: “When is it true that by changing a little the hypotheses of a theorem one can still assert that the thesis of the theorem remains true or approximately true?”. In 1941, Hyers solved this stability problem for linear mappings. According to Gruber 1978 this kind of stability problems are of the particular interest in probability theory and in the case of functional equations of different types. In 1981, Skof was the first author to solve the Ulam problem for quadratic mappings. In 1982–2011, J. M. Rassias solved the above Ulam problem for linear and nonlinear mappings and established analogous stability problems even on restricted domains. The purpose of this paper is the generalized Hyers-Ulam stability for the following cubic functional equation: f mx y f mx − y mf x y mf x − y 2 m3 − m f x ,m ≥ 2 in various normed spaces.
منابع مشابه
Almost Multi-Cubic Mappings and a Fixed Point Application
The aim of this paper is to introduce $n$-variables mappings which are cubic in each variable and to apply a fixed point theorem for the Hyers-Ulam stability of such mapping in non-Archimedean normed spaces. Moreover, a few corollaries corresponding to some known stability and hyperstability outcomes are presented.
متن کاملFixed Point Theorems for Single Valued Mappings Satisfying the Ordered non-Expansive Conditions on Ultrametric and Non-Archimedean Normed Spaces
In this paper, some fixed point theorems for nonexpansive mappings in partially ordered spherically complete ultrametric spaces are proved. In addition, we investigate the existence of fixed points for nonexpansive mappings in partially ordered non-Archimedean normed spaces. Finally, we give some examples to discuss the assumptions and support our results.
متن کاملOn the stability of the Pexiderized cubic functional equation in multi-normed spaces
In this paper, we investigate the Hyers-Ulam stability of the orthogonally cubic equation and Pexiderized cubic equation [f(kx+y)+f(kx-y)=g(x+y)+g(x-y)+frac{2}{k}g(kx)-2g(x),]in multi-normed spaces by the direct method and the fixed point method. Moreover, we prove the Hyers-Ulam stability of the $2$-variables cubic equation [ f(2x+y,2z+t)+f(2x-y,2z-t) =2...
متن کاملConvergence theorems of an implicit iteration process for asymptotically pseudocontractive mappings
The purpose of this paper is to study the strong convergence of an implicit iteration process with errors to a common fixed point for a finite family of asymptotically pseudocontractive mappings and nonexpansive mappings in normed linear spaces. The results in this paper improve and extend the corresponding results of Xu and Ori, Zhou and Chang, Sun, Yang and Yu in some aspects.
متن کاملSOME FIXED POINT THEOREMS IN LOCALLY CONVEX TOPOLOGY GENERATED BY FUZZY N-NORMED SPACES
The main purpose of this paper is to study the existence of afixed point in locally convex topology generated by fuzzy n-normed spaces.We prove our main results, a fixed point theorem for a self mapping and acommon xed point theorem for a pair of weakly compatible mappings inlocally convex topology generated by fuzzy n-normed spaces. Also we givesome remarks in locally convex topology generate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012